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Abstract. Spin generalizations of both the elliptic Calogero—Marchioro—Wolfes model and the
nonlinear Schisdinger model are studied. These models are three-body problems with two- and
three-body potentials, and mathematically related with the exceptional root system of type G
We construct the integrable differential-difference operator, the so-called Dunkl operator, based
on the infinite-dimensional representation for solutions of the variant of the classical Yang—
Baxter equation. By use of these operators, we investigate the integrability and the scattering
matrices.

1. Introduction

The quantum one-dimensional three-body problem interacting via two- and three-body
inverse square potentials was first introduced by Calogero and Marchioro [2], and Wolfes
[1]. This model is called the Calogero—Marchioro—Wolfes (CMW) model. They considered
the energy spectrum and the scattering matrix for the rational potential. Later Gaudin
considered the identical Boson systems interacting \daanction potential, and clarified
the role of the root systems in integrable many-body problems [3, 4]. From this viewpoint,
the integrable three-body problem with two- and three-body interactions is associated with
the exceptional Lie algebra of type,G

In recent studies, the differential-difference operator has been shown to play a crucial
role in the inverse square interaction models [5-7]. We mean the differential-difference
operator as a mixture of a differential and a reflection operator. This operator was originally
introduced as operators associated with the root systems, and is called the Dunkl operator
in recent mathematical terminology [8].

In this paper we propose the spin generalization of both the CMW system with
elliptic interaction and the nonlinear Sélinger (NLS) model with two- and three-body
interactions. Their Hamiltonians are respectively defined by

3 2 3 3
9 . .
Howw = =) o5+ ) pkap@ —acPp+3 ) o) —bP) (1.1)
i=1 “%i i,j=1 i,j k=1
%) oy
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Has=—) —5+a Y 8G)Pj+3b Y 8G)P;. (1.2)
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It will be clarified that the elliptic CMW modeHcuw (1.1) is integrable wher = 1 or

k = 3. Herep(z) is the Weierstrasg-function, and we use conventional notations such
aszij = z; —zj andz;; = z; +z; — 2z for i # j # k # i, where in the latter index is
suppressed since it is determinedibgnd j. Parameters andb denote coupling constants.
OperatorsP;;, and P;; are spin operators and satisfy the following relations [9]:

Pjx = Py Pix Py = Py Pj = Py P; Pﬁ( =1
Py = Py PPy = PPy = P Py f’,zk =1 (1.3)
ijﬁkl = ﬁklpjl = ﬁj]ij ijﬁjk = [)jkij for j, k,l are distinct

These operators are the representation of the Weyl group of the exceptional Lie algebra G
and in terms of the Pauli spin matrice$ (« = x, y, z) they may be chosen as
Py = %(1—}—0}?‘0,? ~|—ajyaky +o70y) Py = Pjoiosaj.

The trigonometric limit of the spin CMW modétcmw (1.1) with « = 1 was first studied
in [9, 10].

This paper is organized as follows. In section 2, we consider the classical Yang—
Baxter equation (CYBE) associated with the root system of type \@e regard solutions
as operators acting on the functional spaces, and propose two sets of solutions: elliptic
and singular. In section 3, following the scheme studied in [11], we shall construct
mutually commuting differential-difference operators, called the Dunkl operators, by use
of the solutions of the cYBE. Owing to the commutativity of the Dunkl operators, it is
straightforward to prove the integrability of both the elliptic CMW model (1.1) and the
NLS model (1.2). In section 4, we shall investigate the scattering matrices of the NLS
model (1.2) by diagonalizing the Dunkl operator. Section 5 is devoted to the concluding
remarks.

2. Classical Yang—Baxter equation

We shall study operator-valued solutions of a variant of the classical Yang—Baxter equation,
which is associated with the root system of type. GA set of the cYBE is defined as
follows [12]:
[r*%(612), r®E19)] + [ (€12, r*2(629)] + [r(613), rP(629)]

+[r'2(E12), 73 (E28) + 7R (E19)] + [P (629), F3(Ena) + F(E12)]

Hr®(Ea0), 7*2(E12) + 73(E23)] = 0 (2.19)
[723(E23), F3(E12)] + [F3(E13), 712(E12)] + [F*2(E12), FP3(E29)] = O (2.1b)
[r* &), ¥ ] = 0. (2.1c)

Here we callg; the spectral parameters. We have also used the same notations as before,
& =& —§& and §ij =& +& -2 fori # j # k #i. Two sets of operators;(£)
and7(£), are associated with roots of type @s is drawn in figure 1. While/*(&) acts

asr(£) on the jth and thekth spaces and as trivial on the other spac&(£) acts on all
spaces, symmetrically on the referred spaces. The second equatigrc(@résponds to the
ordinary cYBE [13], i.e. associated with the root system of type(A> 2). We suppose

thatr (&) andr (&) satisfy the unitarity condition and the symmetric condition, respectively:

rE) = =M (=) (2.2)
FkE) =N (&). (2.3)
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Figure 1. The root system of type $and the classical Yang—Baxter equation.

We shall study the infinite-dimensional representation for solutions of the cYBE (2.1).
To this end we regard@’*(¢) and7#/*(¢) (j, k = 1, 2, 3) as operators acting on the functional
space in the following way:

r/* (&) = F(&, 2j) Kji (2.4)
7*(&) = G, Z) Lk (2.5)

where functionsF' (&, z) and G (&, z) are to be determined so as to satisfy the cYBE (2.1).
OperatorKj; denotes an exchange of thith and thekth coordinates,

Kjrzj = 2 Kjk. (2.6)
OperatorL j; acts on the functional space as
Lixzj = (2R — zx)Ljx Ljtzi = (2R — z))Lji for j#k#1#] (2.7)

where R = (z1 + z2 + z3)/3 is the centre-of-mass coordinate. It is noted [10] that the
operatorL;; can be written adj; = K I, = I.Kj, wherel, is the inversion operator in
relative-coordinate spacé,z; = (2R — z;)I,. The operator(;; andL;; form the dihedral
group Oy and are the same as the Weyl group of the exceptional Lie algebr®& sees
that they satisfy the following relationg (k, [ are distinct):

KixKiy = KuKji = Kj Kji szk =1

LjxLy = LyLj = LjiLj; Lfk =1 (2.8)

LKy = LuKj; =LK K Ljx = LjxKjy.
We remark that these operators commute with the spectral paraniatess &s}.

When we substitute the forms of the classicalperator (2.4) and-operator (2.5) into
the cYBE (2.1), we get a set of functional equations,

F(=&1, —21)F (&2, —z12) + F(&12, 271290 F (—&1, —22) + F (&2, 22) F (612, 21) = 0 (2.%9)
G(—&1, —z21)G (&2, —z12) + G(&12, 2120 G (—&1, —22) + G (&2, 22)G (12, 21) =0 (2.%)
F(£12, 212) G (E13, 729) + F (€23, 223) G (€12, Z19) + F (€31, 231) G (€23, 712)

= F(£12, 231)G (523, 703) + F (523, 212) G (E13, 219) + F (E31, 223) G (12, Z10).
(2.%)
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The functionF (¢, z) is odd due to the unitarity condition of the classieabperator (2.2),

We see that both functionsF(¢,z) and G(&,z) satisfy the same functional
equation, (2.8) and (2.®). This functional equation has appeared in various stages in
connection with the integrable systems, and it is well known that solutions are classified as
follows [11, 14, 15]:

a0z (2) elliptic
a(m cot(mrz) —  cOl(m€)) trigonometric
fEn=1 . (2.11)
a(z"—§&7) rational
a(e(z) — coth(§)) singular.

Hereo is an arbitrary constant, and functiea(z) = o:(z; t) is an elliptic function defined
by

Y1(z — &; 1)91(0; 1)
V1(z; T)01(=&; T)

whered(z; t) is the Jacobi theta function [16],

oz (z;7) =

D(z:iT) = — Y _explim(n+ 3’ +27i(n + 3)(z+3) St >0

nez

The functione(z) denotes a signature af

- +1 forz >0
s = -1 forz < 0.

Since both the trigonometric and the rational solutions are degenerate cases of the elliptic
solution, we treat the elliptic and the singular solutions in the following.

We find that, to satisfy the third functional equation (3,%wo functionsF' (¢, z) and
G (&, z) should be fixed as follows:

(i) elliptic solution,

F(,z2) = a0:(32) or F(&,72) = aoz(2) 2.12)
G(&,z) = Boe(2) G(&,z) = Bo:(2).

(i) singular solution,
F(§,2) = a(e(z) — coth§)) (2.13)
G(&,2) = B(e(z) — coth§)).

Here o and 8 are arbitrary parameters. The validity can be checked by use of identities
such as

0,.(2)o (W) = opqp,(W)or(z — w) + o (W — 2)034(2) (2.142)
0, (2)0_,(2) = 9 (2) — p (1) (2.1%)
1+e(x)e(y) =e(x +y)ex) +e(y)). (2.14)



Integrable three-body problems 1917
3. Integrable three-body problems

In this section, we shall construct the integrable three-body problems interacting via two-
and three-body potentials. For this purpose we shall construct a family of the mutually
commuting operators by use of solutions (2.12) and (2.13) of the cYBE (2.1). We introduce
three operatord;(§) = d; (&1, &, &) for j =1,2,3 as

3 3
di€) =Y r’* &+ Z FrEo - > ™ Ea). (3.1)
=5 = ki

Under the conditions (2.2) and (2.3) of theand7-operators, one sees that they commute
each other:

[d; (), dr(§)] = 0. (3.2
Further, we define three differential-difference operators as

d
d é) = _,7 +d (é). (3.3)
Owing to the commutativity d/9z;, dx(§)] = 0, one can conclude that operato};(f;‘)
commute each other:
[d; (&), d(®)] =0  forj k=123 (3.4)

These integrable differential-difference operators are the Dunkl operators associated with
the root system of type £

As the Dunkl operators?j (&) constitute an integrable family, we can define mutually
commuting integrable operators by

3
L&) =) 7(d ). (3.5)
j=1

The projectiont denotes the restriction of the functional space into symmetric space under
Kjk and ij:

1(OKjp) = OPy n(OLy) = OPy. (3.6)

3.1. The CMW model

We use the elliptic solutions (2.12) in the Dunkl operatt%;@) (equation(3.3)). In this
case the first two conserved operat@sare calculated explicitly as follows:

3.9
1= —i — 3.7)
—1 8Zj
j=
3 82 3 ~
T, = —+ o (kzij)(@® — ak P;j) + 3 Z 9 Gi)(b° —bP,) (3.8)
i= aZl i,j=1 i,j,k=1
i#] i# jFkF#i

where we redefined parameterseas= ia and 8 = ib. Parametek is chosen ag = 1

or k = 3. One sees that operatds coincides with the Hamiltonian of the elliptic CMW
model (1.1). This fact proves the quantum integrability of the elliptic CMW model. We
note that to eliminate the dependence of spectral parameters in the above calculation, we
have subtracted-number terms and have set spectral parametets—as0.
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Now we consider the trigonometric CMW model as a degeneratiof{@fiw (1.1);
we use the trigonometric solutions as in (2.11). After we redefine in the Dunkl
operatorc?j(S) (equation (3.3)) the coordinates €2piz;) — z; and spectral parameters
exp(2ri&;) — &, and set [17]

0K E K&K &3 (3.9)

we obtain thetrigonometric Dunkl operators as,

. 3 3, 3
dj=zj5+a ( > 0K = 9.ikKﬂ<> - b( PILRTEEDD gk’L“) (3.10)
J k=1 k=1

k<j k> j = =
k#j JEkAIE]
where functiong; andéjk are denoted as
3
Zi Z;
Op = — or —— (3.11)
Zj — Tk Zj - Zk
22
—L forj=3o0rk=3
O = Zﬂzk‘z‘ ] (3.12)
Ytk otherwise.
Zjlk — 2y

By construction, these trigonometric operators constitute an integrable family. Although
Quesne also introduced the commuting trigonometric operators associated with thet G
system [10], our construction based on the cYBE (2.1) is suggestive, and is simply given
as a degeneration of thadliptic case.

We find that the Dunkl operators satisfy the following commutation relations:

Ki2dy = do2K1p — a (3.13)
Kiody = diK12+ a (3.1%)
K12ds = d3K 12 (3.1%)
Liad = }(2dy + 2dp — d3)L1g+ b (3.13)
Lyady = %(231 —dy + 2d3) L1z — 2b (3.1%)
Liads = L(—dy + 2d; + 2d3) L1 + b. (3.13)

These are the defining relations of the degenerate affine Hecke algebra of,tjj@.Grhe
conserved operators are calculated after tedious calculation as follows:

= 0z
3 2 3 3 2
d (zizj)* 2 2iZiZf -~ )
I, = (z) + M (ak Py —a®) +3 R (bR — bP)
j=1 ! 9z, i,JZ=:1 (z = Zf)z ! i,jZkil (zizj — 702 N
i#j i #hAi

wherex = 1 or 3. When we introduce the coordinates;ps- exp(2rix; /L), the conserved
operatorsZ; andZ, respectively reduce to the total momentum and the Hamiltonian of the
trigonometric CMW model [2],

2w 5.9
Y =5 L
(L) ' Zax/’

i=1
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27\? 3. 92 T\ &S az—aKPij
(L) T2= _Z 9x? * <Z> Z Sir? Tie(x; — x;)
j=194j ij=1 Wi j

i#]

(n 23: b2 —bP,
L) e L SIP 7 (x; 4+ xj — 2x)
;e

3.2. NLS model of typé&~

We shall treat the quantum integrability of the nonlinear 8dirger model with two- and
three-body interactions in the same manner. We use the Dunkl operator (3.3) with the
singular solution (2.13), and for our later convenience we set the spectral parameters as
in (3.9). In this region the Dunkl operator becomes independent of the spectral parameters,
and is explicitly given by

A ol
d = _Ii + If Z(g(zlk) S]k)K/k

0z;
k#/
3
+ > < Z(E(ij) —&jx)Ljk — Z (e(zw) — gkz)Lkl)- (3.14)
= i

Here we have set = ia/2 andg = ib/2. Constantg;, andé;; are defined as

+1 forj >k
e 3.15
e { -1 for j <k (3.15)
+1 forj=30rk=3
Eix = 3.16
eIk I -1 otherwise. (3.16)

One sees that operatoa%- satisfy the same commutation relations (3.13) with the
trigonometric Dunkl operators as follows:

K1ody = doK12 + ia (3.174)
Kiodo = d1K12 — ia (3.17)
Kiods = d3K 1, (3.17)
Liady = 1(2dy + 2d, — d3)Ly3 — ib (3.17d)
Liady = 3(2dy — dp + 2d3) Ly3 + 2ib (3.17)
Liads = }(—dy + 2d5 + 2d3) L1z — ib. (3.17)

For these Dunkl operators, we calculate the first two conserved opefatesplicitly as
follows:

3.9
Ilz—izf

=1 %

3 52 3 3 }
Z 3* +a Z 8(zij)Pij + 3b Z 8(zij) Pij.
i1 =1 i k=1

i#] i jFkFE
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We see that operatdf, coincides with the Hamiltonian of the three-body NLS model
HNLS (1.2) and that operatdf; denotes a total momentum. This fact proves the quantum
integrability of the coloured NLS model interacting via two- and three-body potentials.

4. Scattering matrix of the NLS model

In this section we shall study the scattering matrices for the NLS mdeéL S associated
with the root system of type £(1.2). Since the conserved operatd@ys(3.5) for the NLS
model are given from the mutually commuting differential-difference opera?;o(r&.14), the
diagonalization ofz, is equivalent to that of the Dunkl operatcuf‘,s We shall diagonalize
the Dunkl operatoz?j (3.14) to calculate the scattering matrices.

As we have proved the quantum integrability of the NLS model, we suppose that the
scattering matrix is factorizable. First we shall diagonalize the two-body Dunkl operators
to determine the two-body scattering matric8sz(k1, k2) [11]. Consider the following
differential equationsk = (k1, k2)):

d1W (21, 72) = k1 Wy (21, 22) (4.13)
AWy (21, 22) = koWi (21, 22) (4.1b)

wherek; andk, are momenta, and the two-particle Dunkl operati}rare given by

N .0 .a ~

dy = —i— +i-(e(z12) + D12
311 2

A .0 .a o

dy = —i— +i=(e(z21) — D512
312 2

The above eigenvalue problems (4.1) are solved exactly, and their solution is

Wi (z1, 22) = % <ei/<121+ikzzz 4 kl_iki_iaeikzu-kihzz)
1-—e(z12) ki—k2 i
i ék1<,1+lkzzz . 42
+ 2 k]_ — k2 — la ( )

This form of the wavefunctionV(z1, z2) indicates that the scattering matrix of the two
particles is given by

1— ko +iaPys

k
S12(k1, ko) = Py (4.3)

One sees that the two-body scattering matfiy(ki, k) satisfies the Yang—Baxter
equation [18],

S1a(k1, ko) S13(k1, k3)Sa3(ko, k3) = Soa(ka, k3)S13(k1, k3)S12(k1, k2). (4.4)

Next we shall calculate the three-body scattering mallsixka, k2, k3) due to the three-
body interactions. Here, for brevity, we shall get 0 in the Dunkl operators for the NLS
model (3.14), and consider the following differential equatidkas=((k1, k2, k3));

d1 Wy (21, 22, 23) = k1 Wk (21, 22, 23) (4.%9)
AW (21, 22, 23) = koW (21, 22, 23) (4.90)
d3Wi(z1, 72, 23) = kaWi (21, 22, 23) (4.50)
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® | @ .

Z12

Figure 2. Divided regions for three-body scattering matrix.

wherek, kp, andks are momenta, and the three-body Dunkl operaﬁprare given by

o .0 b 5 - -
dy = _IBT1 + IE((E(ZB) —DLiz+ (e(Z12) + D L12 — 2(e(223) — 1) L23)
A . d b - - -
dr = —IafZ2 + IE((S(Zzs) — D Lo+ (e(Z12) + D L12 — 2(e(Z13) — D L13)
o .0 b - - -
d3 = _IT@, + IE((8(Z23) — D Lo+ (6(Z13) — D L1z — 2(6(212) + D L1o).

To solve the differential equations, we assume that the eigenfundtigry, z,, z3) has a
form

6
U (21, 22, 23) = Z Xj (21, 22, 23) ¥ (21, 22, 23) (4.6)
=

where x; (z1, z2, z3) denote the characteristic functions of six divided regions which follow
from roots of the G (figure 2); explicitly they are defined as

1-2(Z13) 1 —¢(Z12)

x1(z1, 22, 73) =

2 2
1+ 6(Z23) 1+ &(212)
x2(z1, 22, 23) =
2 2
(21, 22, 23) = 1-—e(Z29) 1 — (213
x3(21, 22, 23) = > >
1+6(Z13) 1+ &(212)
x4(z1, 22, 23) = 5 >
(21, 22, 23) = 1—e(Z3) 1 —€(Z12)
x5(21, 22, 23) = 5 >
1+ 6(Z23) 1+ (213
xe(z1, 22, 23) = 5 3 )

Substituting the wave function (4.6) into the eigenvalue problems (4.5), we obtain differential
equations fory;. Among them, equations concernigg and g are written as follows:
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e for Zo3 > 0 andzy3 > O,

.0
_|£W6(Zly 22, 23) = k1e(21, 22, 23) (4.7a)
1
.0
—lafzzl/fa(m, 22, 23) = k2Ve(z21, 22, 23) (4.70)
.0
—|873W6(11, 22, 23) = kae(z1, 22, 23) (4.7c)
e for 7o3 < 0 andz2 < 0,
.0 .
—lalelﬁs(zla 72, 23) + 2ibY6(2R — 21, 2R — z3, 2R — z2) = k1¥s(z1, 22, 23) (4.82)
. d .
—|@¢5(Zl, 22, 23) — ibYe(2R — 71, 2R — 23, 2R — 72) = kos(z1, 22, 23) (4.80)
.0 .
_|87Z3¢5(Zla 22, 23) — 1bYe(2R — z1, 2R — z3, 2R — 72) = kas(z1, 22, 23) (4.8¢c)
o for 223=0,
Vs(z1, 22, 23) = Ye(21, 22, 23). (4.9)
Under a condition for continuity (4.9), equations (4.7) and (4.8) are solved as
Vo(z1, 22, 23) = = o glanrtikazrtikezs (4.108)
kos + 3ib
WS(ZL 2, Z3) — eik1Z1+ikzz2+ik3Z3 _ ingeiklmszZZHk:;Q. (4103)
koz + 3ib

Comparing the coefficients of this wavefunction, we conclude that the scattering matrix for
the three-body interaction are given as

~ k23 - 3|bP23
S23(k1, k2, k3) = ot 3ib (4.12)
We note that the three-body scattering matﬁ};((kl, ko, k3) also satisfies the Yang—
Baxter equation,
S1o(ky, ko, k3)S1a(—k1, —ka, —k3)Saa(ky, ko, k3)
= Saa(ky, ko, k3)S1a(—k1, —ka, —ka)S1a(ky, ko, k3). (4.12)
Moreover, the scattering matric8g (k1, k2) (4.3) ands; i (k1, ko, k3) (4.11) satisfy the Yang—
Baxter equation for the root system of type [39],
Saa(ka, k3) Sta(ki, k2, k3) S1a(ke, ka) Saa(—k1, —kz, —ka)S1a(ky, k) S1alks, ka2, ka)
= S13(ka, ko, ka) S1a(ky, k2)Sza(—k1, —ka, —k3)
x S13(k1, ka) S1a(ka, k2, ka) Saa(ka, k). (4.13)

5. Concluding remarks

In this paper we have studied the integrable three-body problem with two- and three-body
interactions, which is mathematically related with the root systems of typelge crucial
tools are the classical Yang—Baxter equation (2.1) for the root systerwi@se solutions
we have regarded as operators acting on the functional space. Following the idea of [11],
we have proposed a systematic way to construct a set of the Dunkl operators, i.e. a set
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of the integrable differential-difference operators, associated with the root system of type

G, using the operator-valued solutions of the cYBE. Generally the Dunkl operator can be

written as ( = 1, 2, 3)

. 9 E 3. 3 }

i@ =i~ +> FEr oK+ G Zwlu— Y, Gzl  (6.1)
= = oy

where functionsF(§,z) and G(§,z) are solutions of the functional equations (2.9).

Parametersé;} play a role of the spectral parameters and take arbitrary values.

As examples of the above Dunkl operators, we have introduced two sets of operators;
elliptic and singular operators. We have shown that these Dunkl operators respectively
prove the integrability of the CMW model and the NLS model. It has been pointed out that
the Dunkl operators for both the trigopnometric CMW model and the NLS model constitute
the same algebra, called the degenerate affine Hecke algebra of fyp#/&have also
shown that the scattering matrices of the NLS model, which are given by diagonalizing
the Dunkl operators, satisfy the Yang—Baxter equation associated with the root system of
type G. The diagonalization of the trigonometric Dunkl operators (3.10) could be done
in the same way, and the eigenpolynomial should be related witmdhesymmetriclack
polynomials.

We hope in a forthcoming paper to study the lattice analogue of both the CMW model
and the NLS model by use of operator-valued solutions of the YBE associated with the root
system of type G
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