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Integrable three-body problems with two- and three-body
interactions
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Tokyo 113, Japan
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Abstract. Spin generalizations of both the elliptic Calogero–Marchioro–Wolfes model and the
nonlinear Schr̈odinger model are studied. These models are three-body problems with two- and
three-body potentials, and mathematically related with the exceptional root system of type G2.
We construct the integrable differential-difference operator, the so-called Dunkl operator, based
on the infinite-dimensional representation for solutions of the variant of the classical Yang–
Baxter equation. By use of these operators, we investigate the integrability and the scattering
matrices.

1. Introduction

The quantum one-dimensional three-body problem interacting via two- and three-body
inverse square potentials was first introduced by Calogero and Marchioro [2], and Wolfes
[1]. This model is called the Calogero–Marchioro–Wolfes (CMW) model. They considered
the energy spectrum and the scattering matrix for the rational potential. Later Gaudin
considered the identical Boson systems interacting via aδ-function potential, and clarified
the role of the root systems in integrable many-body problems [3, 4]. From this viewpoint,
the integrable three-body problem with two- and three-body interactions is associated with
the exceptional Lie algebra of type G2.

In recent studies, the differential-difference operator has been shown to play a crucial
role in the inverse square interaction models [5–7]. We mean the differential-difference
operator as a mixture of a differential and a reflection operator. This operator was originally
introduced as operators associated with the root systems, and is called the Dunkl operator
in recent mathematical terminology [8].

In this paper we propose the spin generalization of both the CMW system with
elliptic interaction and the nonlinear Schrödinger (NLS) model with two- and three-body
interactions. Their Hamiltonians are respectively defined by

HCMW = −
3∑
i=1

∂2

∂z2
i

+
3∑

i,j=1
i 6=j

℘ (κzij )(a
2− aκPij )+ 3

3∑
i,j,k=1
i 6=j 6=k 6=i

℘ (z̃ij)(b
2− bP̃ij ) (1.1)

HNLS = −
3∑
i=1

∂2

∂z2
i

+ a
3∑

i,j=1
i 6=j

δ(zij )Pij + 3b
3∑

i,j,k=1
i 6=j 6=k 6=i

δ(z̃ij)P̃ij . (1.2)
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It will be clarified that the elliptic CMW modelHCMW (1.1) is integrable whenκ = 1 or
κ = 3. Here℘(z) is the Weierstrass℘-function, and we use conventional notations such
as zij ≡ zi − zj and z̃ij ≡ zi + zj − 2zk for i 6= j 6= k 6= i, where in the latter indexk is
suppressed since it is determined byi andj . Parametersa andb denote coupling constants.
OperatorsPjk and P̃jk are spin operators and satisfy the following relations [9]:

Pjk = Pkj PjkPkl = PklPjl = PjlPjk P 2
jk = 1I

P̃jk = P̃kj P̃jkP̃kl = P̃klP̃j l = P̃j lP̃jk P̃ 2
jk = 1I

PjkP̃kl = P̃klPjl = P̃j lPjk PjkP̃jk = P̃jkPjk for j, k, l are distinct.

(1.3)

These operators are the representation of the Weyl group of the exceptional Lie algebra G2,
and in terms of the Pauli spin matricesσα (α = x, y, z) they may be chosen as

Pjk = 1
2(1+ σxj σ xk + σyj σ yk + σ zj σ zk ) P̃jk = Pjkσ z1σ z2σ z3 .

The trigonometric limit of the spin CMW modelHCMW (1.1) with κ = 1 was first studied
in [9, 10].

This paper is organized as follows. In section 2, we consider the classical Yang–
Baxter equation (cYBE) associated with the root system of type G2. We regard solutions
as operators acting on the functional spaces, and propose two sets of solutions: elliptic
and singular. In section 3, following the scheme studied in [11], we shall construct
mutually commuting differential-difference operators, called the Dunkl operators, by use
of the solutions of the cYBE. Owing to the commutativity of the Dunkl operators, it is
straightforward to prove the integrability of both the elliptic CMW model (1.1) and the
NLS model (1.2). In section 4, we shall investigate the scattering matrices of the NLS
model (1.2) by diagonalizing the Dunkl operator. Section 5 is devoted to the concluding
remarks.

2. Classical Yang–Baxter equation

We shall study operator-valued solutions of a variant of the classical Yang–Baxter equation,
which is associated with the root system of type G2. A set of the cYBE is defined as
follows [12]:

[r12(ξ12), r
13(ξ13)] + [r12(ξ12), r

23(ξ23)] + [r13(ξ13), r
23(ξ23)]

+[r12(ξ12), r̃
23(ξ̃23)+ r̃13(ξ̃13)] + [r23(ξ23), r̃

13(ξ̃13)+ r̃12(ξ̃12)]

+[r31(ξ31), r̃
12(ξ̃12)+ r̃23(ξ̃23)] = 0 (2.1a)

[r̃23(ξ̃23), r̃
13(ξ̃13)] + [r̃13(ξ̃13), r̃

12(ξ̃12)] + [r̃12(ξ̃12), r̃
23(ξ̃23)] = 0 (2.1b)

[rjk(ξjk), r̃
jk(ξ̃jk)] = 0. (2.1c)

Here we callξj the spectral parameters. We have also used the same notations as before,
ξij = ξi − ξj and ξ̃ij = ξi + ξj − 2ξk for i 6= j 6= k 6= i. Two sets of operators,r(ξ)
and r̃(ξ ), are associated with roots of type G2 as is drawn in figure 1. Whilerjk(ξ) acts
as r(ξ) on thej th and thekth spaces and as trivial on the other space,r̃ jk(ξ) acts on all
spaces, symmetrically on the referred spaces. The second equation (2.1b) corresponds to the
ordinary cYBE [13], i.e. associated with the root system of type An (n > 2). We suppose
that r(ξ) and r̃(ξ ) satisfy the unitarity condition and the symmetric condition, respectively:

rjk(ξ) = −rkj (−ξ) (2.2)

r̃ jk(ξ) = r̃ kj (ξ). (2.3)
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Figure 1. The root system of type G2 and the classical Yang–Baxter equation.

We shall study the infinite-dimensional representation for solutions of the cYBE (2.1).
To this end we regardrjk(ξ) andr̃ jk(ξ) (j, k = 1, 2, 3) as operators acting on the functional
space in the following way:

rjk(ξ) = F(ξ, zjk)Kjk (2.4)

r̃ jk(ξ) = G(ξ, z̃jk)Ljk (2.5)

where functionsF(ξ, z) andG(ξ, z) are to be determined so as to satisfy the cYBE (2.1).
OperatorKjk denotes an exchange of thej th and thekth coordinates,

Kjkzj = zkKjk. (2.6)

OperatorLjk acts on the functional space as

Ljkzj = (2R − zk)Ljk Ljkzl = (2R − zl)Ljk for j 6= k 6= l 6= j (2.7)

whereR ≡ (z1 + z2 + z3)/3 is the centre-of-mass coordinate. It is noted [10] that the
operatorLjk can be written asLjk = KjkIr = IrKjk, whereIr is the inversion operator in
relative-coordinate space,Irzj = (2R− zj )Ir . The operatorsKjk andLjk form the dihedral
group D6 and are the same as the Weyl group of the exceptional Lie algebra G2. One sees
that they satisfy the following relations (j , k, l are distinct):

KjkKkl = KklKjl = KjlKjk K2
jk = 1I

LjkLkl = LklLjl = LjlLjk L2
jk = 1I

LjkKkl = LklKjl = LjlKjk KjkLjk = LjkKjk.
(2.8)

We remark that these operators commute with the spectral parameters{ξ1, ξ2, ξ3}.
When we substitute the forms of the classicalr-operator (2.4) and̃r-operator (2.5) into

the cYBE (2.1), we get a set of functional equations,

F(−ξ1,−z1)F (ξ2,−z12)+ F(ξ12, z12)F (−ξ1,−z2)+ F(ξ2, z2)F (ξ12, z1) = 0 (2.9a)

G(−ξ1,−z1)G(ξ2,−z12)+G(ξ12, z12)G(−ξ1,−z2)+G(ξ2, z2)G(ξ12, z1) = 0 (2.9b)

F(ξ12, z12)G(ξ̃13, z̃23)+ F(ξ23, z23)G(ξ̃12, z̃13)+ F(ξ31, z31)G(ξ̃23, z̃12)

= F(ξ12, z31)G(ξ̃23, z̃23)+ F(ξ23, z12)G(ξ̃13, z̃13)+ F(ξ31, z23)G(ξ̃12, z̃12).

(2.9c)
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The functionF(ξ, z) is odd due to the unitarity condition of the classicalr-operator (2.2),

F(ξ, z) = −F(−ξ,−z). (2.10)

We see that both functionsF(ξ, z) and G(ξ, z) satisfy the same functional
equation, (2.9a) and (2.9b). This functional equation has appeared in various stages in
connection with the integrable systems, and it is well known that solutions are classified as
follows [11, 14, 15]:

f (ξ, z) =


ασξ (z) elliptic

α(π cot(πz)− π cot(πξ)) trigonometric

α(z−1− ξ−1) rational

α(ε(z)− coth(ξ)) singular.

(2.11)

Hereα is an arbitrary constant, and functionσξ (z) ≡ σξ (z; τ) is an elliptic function defined
by

σξ (z; τ) = ϑ1(z − ξ ; τ)ϑ ′1(0; τ)
ϑ1(z; τ)ϑ1(−ξ ; τ)

whereϑ1(z; τ) is the Jacobi theta function [16],

ϑ1(z; τ) = −
∑
n∈Z

exp(iπ(n+ 1
2)

2τ + 2π i(n+ 1
2)(z + 1

2)) =τ > 0.

The functionε(z) denotes a signature ofz,

ε(z) =
{
+1 for z > 0

−1 for z < 0.

Since both the trigonometric and the rational solutions are degenerate cases of the elliptic
solution, we treat the elliptic and the singular solutions in the following.

We find that, to satisfy the third functional equation (2.9c), two functionsF(ξ, z) and
G(ξ, z) should be fixed as follows:

(i) elliptic solution,{
F(ξ, z) = ασξ (3z)
G(ξ, z) = βσξ (z)

or

{
F(ξ, z) = ασ3ξ (z)

G(ξ, z) = βσξ (z).
(2.12)

(ii) singular solution,{
F(ξ, z) = α(ε(z)− coth(ξ))

G(ξ, z) = β(ε(z)− coth(ξ)).
(2.13)

Here α and β are arbitrary parameters. The validity can be checked by use of identities
such as

σλ(z)σµ(w) = σλ+µ(w)σλ(z − w)+ σµ(w − z)σλ+µ(z) (2.14a)

σµ(z)σ−µ(z) = ℘(z)− ℘(µ) (2.14b)

1+ ε(x)ε(y) = ε(x + y)(ε(x)+ ε(y)). (2.14c)
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3. Integrable three-body problems

In this section, we shall construct the integrable three-body problems interacting via two-
and three-body potentials. For this purpose we shall construct a family of the mutually
commuting operators by use of solutions (2.12) and (2.13) of the cYBE (2.1). We introduce
three operatorsdj (ξ) ≡ dj (ξ1, ξ2, ξ3) for j = 1, 2, 3 as

dj (ξ) =
3∑
k=1
k 6=j

rjk(ξjk)+
3∑
k=1
k 6=j

r̃jk(ξ̃jk)−
3∑

k,l=1
j 6=k 6=l 6=j

r̃kl(ξ̃kl). (3.1)

Under the conditions (2.2) and (2.3) of ther- and r̃-operators, one sees that they commute
each other:

[dj (ξ), dk(ξ)] = 0. (3.2)

Further, we define three differential-difference operators as

d̂j (ξ) ≡ −i
∂

∂zj
+ dj (ξ). (3.3)

Owing to the commutativity [∂/∂zj , dk(ξ)] = 0, one can conclude that operatorsd̂j (ξ)
commute each other:

[d̂j (ξ), d̂k(ξ)] = 0 for j, k = 1, 2, 3. (3.4)

These integrable differential-difference operators are the Dunkl operators associated with
the root system of type G2.

As the Dunkl operatorŝdj (ξ) constitute an integrable family, we can define mutually
commuting integrable operators by

In(ξ) =
3∑

j=1

π(d̂nj (ξ)). (3.5)

The projectionπ denotes the restriction of the functional space into symmetric space under
Kjk andLjk:

π(OKjk) = OPjk π(OLjk) = OP̃jk. (3.6)

3.1. The CMW model

We use the elliptic solutions (2.12) in the Dunkl operatorsd̂j (ξ) (equation(3.3)). In this
case the first two conserved operatorsIn are calculated explicitly as follows:

I1 = −i
3∑

j=1

∂

∂zj
(3.7)

I2 = −
3∑
i=1

∂2

∂z2
i

+
3∑

i,j=1
i 6=j

℘ (κzij )(a
2− aκPij )+ 3

3∑
i,j,k=1
i 6=j 6=k 6=i

℘ (z̃ij)(b
2− bP̃ij ) (3.8)

where we redefined parameters asα = ia and β = ib. Parameterκ is chosen asκ = 1
or κ = 3. One sees that operatorI2 coincides with the Hamiltonian of the elliptic CMW
model (1.1). This fact proves the quantum integrability of the elliptic CMW model. We
note that to eliminate the dependence of spectral parameters in the above calculation, we
have subtractedc-number terms and have set spectral parameters asξ → 0.
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Now we consider the trigonometric CMW model as a degeneration ofHCMW (1.1);
we use the trigonometric solutions as in (2.11). After we redefine in the Dunkl
operatord̂j (ξ) (equation (3.3)) the coordinates exp(2π izj ) → zj and spectral parameters
exp(2π iξj )→ ξj , and set [17]

0� ξ1� ξ2� ξ3 (3.9)

we obtain thetrigonometricDunkl operators as,

d̂j = zj ∂
∂zj
+ a

(∑
k<j

θkjKjk −
∑
k>j

θjkKjk

)
− b

( 3∑
k=1
k 6=j

θ̃jkLjk −
3∑

k,l=1
j 6=k 6=l 6=j

θ̃klLkl

)
(3.10)

where functionsθjk and θ̃jk are denoted as

θjk = zj

zj − zk or
z3
j

z3
j − z3

k

(3.11)

θ̃jk =


z2
l

zj zk − z2
l

for j = 3 or k = 3

zj zk

zj zk − z2
l

otherwise.
(3.12)

By construction, these trigonometric operators constitute an integrable family. Although
Quesne also introduced the commuting trigonometric operators associated with the G2 root
system [10], our construction based on the cYBE (2.1) is suggestive, and is simply given
as a degeneration of theelliptic case.

We find that the Dunkl operators satisfy the following commutation relations:

K12d̂1 = d̂2K12− a (3.13a)

K12d̂2 = d̂1K12+ a (3.13b)

K12d̂3 = d̂3K12 (3.13c)

L13d̂1 = 1
3(2d̂1+ 2d̂2− d̂3)L13+ b (3.13d)

L13d̂2 = 1
3(2d̂1− d̂2+ 2d̂3)L13− 2b (3.13e)

L13d̂3 = 1
3(−d̂1+ 2d̂2+ 2d̂3)L13+ b. (3.13f)

These are the defining relations of the degenerate affine Hecke algebra of type G2 [19]. The
conserved operators are calculated after tedious calculation as follows:

I1 =
3∑

j=1

zj
∂

∂zj

I2 =
3∑

j=1

(
zj
∂

∂zj

)2

+
3∑

i,j=1
i 6=j

(zizj )
κ

(zκi − zκj )2
(aκPij − a2)+ 3

3∑
i,j,k=1
i 6=j 6=k 6=i

zizj z
2
k

(zizj − z2
k )

2
(bP̃ij − b2)

whereκ = 1 or 3. When we introduce the coordinates aszj = exp(2π ixj/L), the conserved
operatorsI1 andI2 respectively reduce to the total momentum and the Hamiltonian of the
trigonometric CMW model [2],(

2π

L

)
· I1 = −i

3∑
i=1

∂

∂xj
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2π

L

)2

· I2 = −
3∑

j=1

∂2

∂x2
j

+
(π
L

)2 3∑
i,j=1
i 6=j

a2− aκPij
sin2 π

L
κ(xi − xj )

+3
(π
L

)2 3∑
i,j,k=1
i 6=j 6=k 6=i

b2− bP̃ij
sin2 π

L
(xi + xj − 2xk)

.

3.2. NLS model of type-G2

We shall treat the quantum integrability of the nonlinear Schrödinger model with two- and
three-body interactions in the same manner. We use the Dunkl operator (3.3) with the
singular solution (2.13), and for our later convenience we set the spectral parameters as
in (3.9). In this region the Dunkl operator becomes independent of the spectral parameters,
and is explicitly given by

d̂j = −i
∂

∂zj
+ i
a

2

3∑
k=1
k 6=j

(ε(zjk)− εjk)Kjk

+i
b

2

( 3∑
k=1
k 6=j

(ε(z̃jk)− ε̃jk)Ljk −
3∑

k,l=1
j 6=k 6=l 6=j

(ε(z̃kl)− ε̃kl)Lkl
)
. (3.14)

Here we have setα = ia/2 andβ = ib/2. Constantsεjk and ε̃jk are defined as

εjk =
{
+1 for j > k

−1 for j < k
(3.15)

ε̃jk =
{
+1 for j = 3 or k = 3

−1 otherwise.
(3.16)

One sees that operatorŝdj satisfy the same commutation relations (3.13) with the
trigonometric Dunkl operators as follows:

K12d̂1 = d̂2K12+ ia (3.17a)

K12d̂2 = d̂1K12− ia (3.17b)

K12d̂3 = d̂3K12 (3.17c)

L13d̂1 = 1
3(2d̂1+ 2d̂2− d̂3)L13− ib (3.17d)

L13d̂2 = 1
3(2d̂1− d̂2+ 2d̂3)L13+ 2ib (3.17e)

L13d̂3 = 1
3(−d̂1+ 2d̂2+ 2d̂3)L13− ib. (3.17f)

For these Dunkl operators, we calculate the first two conserved operatorsIn explicitly as
follows:

I1 = −i
3∑

j=1

∂

∂zj

I2 = −
3∑
i=1

∂2

∂z2
i

+ a
3∑

i,j=1
i 6=j

δ(zij )Pij + 3b
3∑

i,j,k=1
i 6=j 6=k 6=i

δ(z̃ij)P̃ij .
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We see that operatorI2 coincides with the Hamiltonian of the three-body NLS model
HNLS (1.2) and that operatorI1 denotes a total momentum. This fact proves the quantum
integrability of the coloured NLS model interacting via two- and three-body potentials.

4. Scattering matrix of the NLS model

In this section we shall study the scattering matrices for the NLS modelHNLS associated
with the root system of type G2 (1.2). Since the conserved operatorsIn (3.5) for the NLS
model are given from the mutually commuting differential-difference operatorsd̂j (3.14), the
diagonalization ofIn is equivalent to that of the Dunkl operatorsd̂j . We shall diagonalize
the Dunkl operator̂dj (3.14) to calculate the scattering matrices.

As we have proved the quantum integrability of the NLS model, we suppose that the
scattering matrix is factorizable. First we shall diagonalize the two-body Dunkl operators
to determine the two-body scattering matrices,S12(k1, k2) [11]. Consider the following
differential equations (k = (k1, k2)):

d̂19k(z1, z2) = k19k(z1, z2) (4.1a)

d̂29k(z1, z2) = k29k(z1, z2) (4.1b)

wherek1 andk2 are momenta, and the two-particle Dunkl operatorsd̂j are given by

d̂1 = −i
∂

∂z1
+ i
a

2
(ε(z12)+ 1)ŝ12

d̂2 = −i
∂

∂z2
+ i
a

2
(ε(z21)− 1)ŝ12.

The above eigenvalue problems (4.1) are solved exactly, and their solution is

9k(z1, z2) = 1+ ε(z12)

2

(
eik1z1+ik2z2 + ia

k1− k2− ia
eik2z1+ik1z2

)
+1− ε(z12)

2

(
k1− k2

k1− k2− ia
eik1z1+ik2z2

)
. (4.2)

This form of the wavefunction9k(z1, z2) indicates that the scattering matrix of the two
particles is given by

S12(k1, k2) = k1− k2+ iaP12

k1− k2− ia
. (4.3)

One sees that the two-body scattering matrixS12(k1, k2) satisfies the Yang–Baxter
equation [18],

S12(k1, k2)S13(k1, k3)S23(k2, k3) = S23(k2, k3)S13(k1, k3)S12(k1, k2). (4.4)

Next we shall calculate the three-body scattering matrixS̃23(k1, k2, k3) due to the three-
body interactions. Here, for brevity, we shall seta = 0 in the Dunkl operators for the NLS
model (3.14), and consider the following differential equations (k = (k1, k2, k3));

d̂19k(z1, z2, z3) = k19k(z1, z2, z3) (4.5a)

d̂29k(z1, z2, z3) = k29k(z1, z2, z3) (4.5b)

d̂39k(z1, z2, z3) = k39k(z1, z2, z3) (4.5c)
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Figure 2. Divided regions for three-body scattering matrix.

wherek1, k2, andk3 are momenta, and the three-body Dunkl operatorsd̂j are given by

d̂1 = −i
∂

∂z1
+ i
b

2
((ε(z̃13)− 1)L13+ (ε(z̃12)+ 1)L12− 2(ε(z̃23)− 1)L23)

d̂2 = −i
∂

∂z2
+ i
b

2
((ε(z̃23)− 1)L23+ (ε(z̃12)+ 1)L12− 2(ε(z̃13)− 1)L13)

d̂3 = −i
∂

∂z3
+ i
b

2
((ε(z̃23)− 1)L23+ (ε(z̃13)− 1)L13− 2(ε(z̃12)+ 1)L12).

To solve the differential equations, we assume that the eigenfunction9k(z1, z2, z3) has a
form

9k(z1, z2, z3) =
6∑

j=1

χj (z1, z2, z3)ψj (z1, z2, z3) (4.6)

whereχj (z1, z2, z3) denote the characteristic functions of six divided regions which follow
from roots of the G2 (figure 2); explicitly they are defined as

χ1(z1, z2, z3) = 1− ε(z̃13)

2

1− ε(z̃12)

2

χ2(z1, z2, z3) = 1+ ε(z̃23)

2

1+ ε(z̃12)

2

χ3(z1, z2, z3) = 1− ε(z̃23)

2

1− ε(z̃13)

2

χ4(z1, z2, z3) = 1+ ε(z̃13)

2

1+ ε(z̃12)

2

χ5(z1, z2, z3) = 1− ε(z̃23)

2

1− ε(z̃12)

2

χ6(z1, z2, z3) = 1+ ε(z̃23)

2

1+ ε(z̃13)

2
.

Substituting the wave function (4.6) into the eigenvalue problems (4.5), we obtain differential
equations forψj . Among them, equations concerningψ5 andψ6 are written as follows:
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• for z̃23> 0 andz̃13> 0,

−i
∂

∂z1
ψ6(z1, z2, z3) = k1ψ6(z1, z2, z3) (4.7a)

−i
∂

∂z2
ψ6(z1, z2, z3) = k2ψ6(z1, z2, z3) (4.7b)

−i
∂

∂z3
ψ6(z1, z2, z3) = k3ψ6(z1, z2, z3) (4.7c)

• for z̃23< 0 andz̃12< 0,

−i
∂

∂z1
ψ5(z1, z2, z3)+ 2ibψ6(2R − z1, 2R − z3, 2R − z2) = k1ψ5(z1, z2, z3) (4.8a)

−i
∂

∂z2
ψ5(z1, z2, z3)− ibψ6(2R − z1, 2R − z3, 2R − z2) = k2ψ5(z1, z2, z3) (4.8b)

−i
∂

∂z3
ψ5(z1, z2, z3)− ibψ6(2R − z1, 2R − z3, 2R − z2) = k3ψ5(z1, z2, z3) (4.8c)

• for z̃23= 0,

ψ5(z1, z2, z3) = ψ6(z1, z2, z3). (4.9)

Under a condition for continuity (4.9), equations (4.7) and (4.8) are solved as

ψ6(z1, z2, z3) = k̃23

k̃23+ 3ib
eik1z1+ik2z2+ik3z3 (4.10a)

ψ5(z1, z2, z3) = eik1z1+ik2z2+ik3z3− 3ib

k̃23+ 3ib
L23eik1z1+ik2z2+ik3z3. (4.10b)

Comparing the coefficients of this wavefunction, we conclude that the scattering matrix for
the three-body interaction are given as

S̃23(k1, k2, k3) = k̃23− 3ibP̃23

k̃23+ 3ib
. (4.11)

We note that the three-body scattering matrixS̃ij (k1, k2, k3) also satisfies the Yang–
Baxter equation,

S̃12(k1, k2, k3)S̃13(−k1,−k2,−k3)S̃23(k1, k2, k3)

= S̃23(k1, k2, k3)S̃13(−k1,−k2,−k3)S̃12(k1, k2, k3). (4.12)

Moreover, the scattering matricesSij (k1, k2) (4.3) andS̃ij (k1, k2, k3) (4.11) satisfy the Yang–
Baxter equation for the root system of type G2 [19],

S23(k2, k3)S̃12(k1, k2, k3)S13(k1, k3)S̃23(−k1,−k2,−k3)S12(k1, k2)S̃13(k1, k2, k3)

= S̃13(k1, k2, k3)S12(k1, k2)S̃23(−k1,−k2,−k3)

×S13(k1, k3)S̃12(k1, k2, k3)S23(k2, k3). (4.13)

5. Concluding remarks

In this paper we have studied the integrable three-body problem with two- and three-body
interactions, which is mathematically related with the root systems of type G2. The crucial
tools are the classical Yang–Baxter equation (2.1) for the root system G2, whose solutions
we have regarded as operators acting on the functional space. Following the idea of [11],
we have proposed a systematic way to construct a set of the Dunkl operators, i.e. a set
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of the integrable differential-difference operators, associated with the root system of type
G2 using the operator-valued solutions of the cYBE. Generally the Dunkl operator can be
written as (j = 1, 2, 3)

d̂j (ξ) = −i
∂

∂zj
+

3∑
k=1
k 6=j

F (ξjk, zjk)Kjk +
3∑
k=1
k 6=j

G(ξ̃jk, z̃jk)Ljk −
3∑

k,l=1
j 6=k 6=l 6=j

G(ξ̃kl, z̃kl)Lkl (5.1)

where functionsF(ξ, z) and G(ξ, z) are solutions of the functional equations (2.9).
Parameters{ξj } play a role of the spectral parameters and take arbitrary values.

As examples of the above Dunkl operators, we have introduced two sets of operators;
elliptic and singular operators. We have shown that these Dunkl operators respectively
prove the integrability of the CMW model and the NLS model. It has been pointed out that
the Dunkl operators for both the trigonometric CMW model and the NLS model constitute
the same algebra, called the degenerate affine Hecke algebra of type G2. We have also
shown that the scattering matrices of the NLS model, which are given by diagonalizing
the Dunkl operators, satisfy the Yang–Baxter equation associated with the root system of
type G2. The diagonalization of the trigonometric Dunkl operators (3.10) could be done
in the same way, and the eigenpolynomial should be related with thenon-symmetricJack
polynomials.

We hope in a forthcoming paper to study the lattice analogue of both the CMW model
and the NLS model by use of operator-valued solutions of the YBE associated with the root
system of type G2.
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